Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]				
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi				
CRM08	Rev 1.10	EC	23-02-2021	

<u>Preparatory Test</u>				
Dept:EC	Sem / Div:III A&B	Sub:Digital System Design	S Code:18EC34	
Date:25-02-2021	Time: 10:0-1:00 pm	Max Marks: 100	Elective:N	
Note: Answer any 5 full questions, choosing one full question from each Module.				
-				

QN	Questions	Marks	RBT	COs
	Module 1			
	Design a combinational circuit to output the 2's complement of a 4-bit binary number	7	L3	CO1
	Identify Prime Implicants and Essential Prime Implicants of the following Boolean function: $f(a,b,c,d)=\Sigma(0, 1, 4, 6, 7, 9, 15)+\Sigma d(3, 5, 11, 13)$. Draw the diagram using NOR gates.	7	L2	CO1
c	Expand the following into canonical form I) f1=a+bc+ac'd into minterms II) f2=a(b+c)(a+c+d) into maxterms	6	L2	CO1
	OR	_		~~ 1
	Find minimal sum of the following boolean function using Quine McCluskey Method (a,b,c,d)= $\Sigma m(2,3,4,5,13,15) + d(8,9,10,11)$	7	L2	CO1
	Obtain minimal expression using k-map for the following incompletely specified function: $F(a,b,c,d) = \Sigma m(0,1,4,6,7,9,15) + d(3,5,11,13)$ and draw the circuit diagram using NAND gates	7	L2	CO1
	Explain Prime Implicants, Essential Prime Implicant, Canonical SOP, Canonical POS and Minterm.	6	L2	CO1
	Module 2			
	Design 4 to 16 decoder using 3 to 8 decoder(74138) and Realize the function using 74138: a) $P=f(w,x,y,z)=\Sigma(1,4,8,13)$ b) $Q=f(a,b,c,d)=\Sigma(2,7,13,15)$	7	L3	CO2
	Define encoder. Design 4-bit priority encoder with validity output which gives MSB the highest priority and LSB the least Priority.	7	L3	CO2
c	Explain 4-bit carry look ahead adder with necessary diagram and relevant expression	6	L2	CO2
	OR			
	Implement the function $f(a,b,c,d) = \Sigma m(0,1,3,4,8,9,15)$ using: a) 4:1 mux with a,c as select lines b) 8:1 mux with a,b,d as select lines	6	L3	CO2
	Define magnitude comparator. Design a combinational circuit that compares two 2-bit binary number and provides 3 outputs	8	L3	CO2
_	Explain the structure of PLA with an example.	6	L2	CO2
	Module 3			
	Explain Master Slave JK flip-flop with the help of circuit diagram and waveforms	8	L2	CO3
	Explain clocked SR-FF using NAND gates with necessary truth table and waveform.	6	L2	CO3
c	Explain universal shift register.	6	L2	CO3
	OR			

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]				
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi				
CRM08	Rev 1.10	EC	23-02-2021	

Preparatory Test			
6 a Explain the concept of Twisted Ring counter with neat circuit diagram	7	L2	CO3
b Explain 4-bit synchronous binary up counter.	7	L2	CO3
c Find characteristic equation for SR flip-flop and JK flipflop with the help of function table.	6	L2	CO3
Module 4			
7 a Design mod-6 counter using D-flipflop. The sequence is 000, 001, 011, 100, 101, 111,000.	10	L3	CO3
b Design a clocked sequential circuit which operates according to the state diagram shown in the figure below. Implement the circuit using negative edge triggered JK fliflop $a = 00$ $b = 01$ $c = 10$ $d = 11$	10	L3	CO3
OR			
8 a Analyze the following sequential circuit. Construct transition table, state table and state diagram.	10	L3	CO3
b Realize synchronous decade counter using T-FF and draw the diagram	10	L3	CO3
Module 5 9 a Construct a Mealy state diagram that will detect input secuence 1011, when input pattern is detected Z is asserted high.		L3	CO4
b Explain with block diagram Serial Adder with accumulator		L2	CO3
OR			
1 a Design a iterative circuit which compares two n-bit binary numbers 0 and determines if they are equal or which one is larger if they are not equal.	10	L3	CO4
b Construct the state diagram for Excess-3 to BCD code converter.		L3	CO4